

Nuevo Puente Champlain sobre el río San Lorenzo en Montreal. Diseño de las estructuras auxiliares para la construcción del puente atirantado

New Champlain Bridge over the Saint Lawrence river in Montreal. Design of the temporary works for the construction of the cable-stayed bridge.

Hugo Corres Peiretti^a, Alejandro Pérez Caldentey^b, Javier Milián Mateos^c, Alejandro Abel Núñez^d, Antonio Romero Ballesteros^e, Conchita Lucas Serrano^f

^a Dr. Ingeniero de Caminos, Canales y Puertos. FHECOR Ingenieros Consultores. Consejero. <u>hcp@fhecor.es</u>

^bDr. Ingeniero de Caminos, Canales y Puertos. FHECOR North America. Director. <u>apc@fhecor.es</u>

^cIngeniero de Caminos, Canales y Puertos. FHECOR Ingenieros Consultores. Jefe de Proyecto. <u>jmm@fhecor.es</u>

^d Ingeniero de Caminos, Canales y Puertos. FHECOR Ingenieros Consultores. Ingeniero de Proyecto. <u>aan@fhecor.es</u>

^e Ingeniero de Caminos, Canales y Puertos. FHECOR Ingenieros Consultores. Jefe de Proyecto. <u>arb@fhecor.es</u>

^fIngeniero de Caminos, Canales y Puertos. gGRAVITY Engineering. Jefa del Dpto. de Estructuras de Obra Civil. <u>clucass@ggravityeng.com</u>

RESUMEN

Este artículo resume el diseño de los elementos auxiliares empleados para la construcción del Nuevo Puente Champlain en la ciudad de Montreal (Canadá). La complejidad de la estructura del puente atirantado, con un ancho total de 60 m y una marcada asimetría en alzado y en sección transversal, ha supuesto un auténtico reto en el diseño de los medios auxiliares y las operaciones de montaje. Se explica detalladamente la singularidad de la operación de ensamblaje y atornillado de las dovelas del vano principal, compuestas por tres cajones mixtos unidos por vigas transversales.

ABSTRACT

This article summarizes the design of the temporary structures used for the construction of the New Champlan Bridge in Montreal (Canadá). The complexity of the structure of the cable-stayed bridge, with a total width of 60 m and a strong asymmetry in elevation and in cross section, has been a real challenge for the design of the temporary works and assembly operations. It is explained in detail the singularity of the assembly and bolting operation of the Main Span segments, comprised of three composite box girders joined together by transverse girders.

PALABRAS CLAVE: puente atirantado, estructuras auxiliares, atornillado, izado, ensamblaje **KEYWORDS:** cable-stayed bridge, temporary works, bolting, erection, assembly

1. Introducción

El Nuevo Puente Champlain sobre el río San Lorenzo se encuentra ubicado en la ciudad de Montreal, Quebec (Canadá), en un tramo del río que tiene un ancho de 2.8 km. Se trata de una estructura de más de 3.3 km de longitud y cerca de 60 m de ancho, distribuido en tres corredores. El puente se divide en tres tramos diferenciados: dos viaductos de aproximación de 26 y 9 vanos (2044.40 y 761.57 m de longitud respectivamente) y el puente principal

de 4 vanos y longitud entre juntas de 528.83 m (fig. 1).

Figura 1. Vista general del puente

Figura 2. Alzado del puente principal

Una característica fundamental del puente es que los dos planos de tirantes se anclan a las vigas cajón transversales (Cross Beams) que unen los cajones longitudinales (fig. 4). Este detalle ha supuesto uno de los principales retos del proyecto, tanto para el ensamblaje de la estructura metálica en el vano de retenida (Back Span) como en el vano principal (Main Span).

Figura 3. Sección tipo del puente principal

Figura 4. Sección transversal del puente principal por Cross Beams

Debido a que el puente es asimétrico tanto en sentido longitudinal como transversal, en proyecto se definió un contrapeso para equilibrar el puente en estado de carga permanente. Este contrapeso consistía en un relleno de hormigón dentro de los cajones metálicos (adicional a la doble acción mixta) (fig. 5). El contrapeso llegaba a ser de hasta aproximadamente el 60% del peso en el Back Span.

Figura 5. Contrapeso en el Back Span (en azul la doble acción mixta y en naranja el contrapeso no estructural)

constructivos Los procesos fueron diferentes para cada uno de los vanos, así como las estructuras auxiliares necesarias para ellos [1] [2] [3]. El Backspan se ejecutó mediante grúas, por segmentos, sobre torres de apeo. Los primeros 36 m del Mainspan se izaron con grúa, por segmentos, sobre una estructura auxiliar de apeo inclinada (Delta Frame). Los siguientes 138 m se montaron por avance en voladizo desde el pilono. Y los restantes 66 m se montaron con una solución híbrida, con apeo provisional y por avance en voladizo con la ayuda de una torre de atirantamiento también provisional.

Todo el Mainspan se construyó por dovelas metálicas de 12.60 m de longitud por casi 60 m de ancho, con un peso de hasta 800 ton cada una. Estas dovelas se manejaban en el aire sobre el canal de navegación, se alineaban y se atornillaban unas con otras, con unas tolerancias de milímetros, gracias a un sistema auxiliar diseñado especialmente al efecto que permitía manejar estas pesadas cargas, y forzar ligeramente su geometría para compatibilizar las diferentes deformaciones entre dovelas.

2. Elementos auxiliares del Back Span

El proceso constructivo del Back Span se realizó mediante construcción apeada sobre torres de apeo de unos 40 m de altura y de hasta 5000 ton de capacidad (fig. 6).

Se emplearon 15 torres de apeo (5 en cada corredor), de las cuales 7 fueron alquiladas a SARENS, reutilizadas de la construcción del Viaducto de Millau en Francia, y las 8 restantes fueron diseñadas específicamente para el proyecto del Nuevo Puente Champlain, siendo fabricadas por talleres locales.

Las torres con mayor capacidad se situaron en el corredor central, puesto que éstas tenían que soportar el peso total del Back Span antes del tesado de los cables. Los cabeceros de las torres fueron diseñados ad hoc y fabricados por TECADE en España y fueron conectados a los alzados de las torres mediante uniones atornilladas pretensadas con agujeros sobredimensionados para facilitar su montaje.

Figura 6. Alzado de las torres del Back Span

El proceso constructivo del Back Span consistió en el montaje de cada tramo metálico de los tres corredores sobre gatos en las torres laterales y sobre neoprenos en las torres centrales (fig. 7).

Después se procedía al hormigonado de la doble acción mixta y contrapesos y posteriormente al de la losa superior. Durante el proceso constructivo se realizaban una serie de desapeos parciales de las torres laterales, para finalmente proceder con el desapeo completo de las torres laterales quedando todo el peso sobre las torres centrales.

Por último, se realizaba el tesado de los tirantes, reduciendo progresivamente la reacción sobre las torres centrales hasta descargarlas completamente. Se previó el uso de gatos hidráulicos para ayudar al desapeo completo de las torres centrales en caso de que los tirantes no las descargaran por completo.

Durante toda la ejecución del Back Span se realizó una monitorización continua de la carga en gatos hidráulicos, así como de la distorsión en los neoprenos para el control de las deformaciones impuestas (debidas a temperatura, retracción y fluencia y al acortamiento debido al tesado de los tirantes) (fig. 8).

A partir de la distorsión del apoyo se podía realizar un cálculo indirecto de las cargas horizontales transmitidas a las torres y controlar de este modo que en todo momento no se superaran las cargas de diseño en servicio consideradas en cada punto de apoyo y torre.

Tanto el proceso de montaje como de desmontaje (incluidos el transporte con carretones autopropulsados multiejes y los medios de izado) (fig. 9) formaron parte esencial en la concepción y en el diseño de detalle de las torres y de los cabeceros de las torres. Para facilitar el montaje, todas las uniones a realizar en obra de todos los elementos auxiliares del proyecto fueron atornilladas.

Figura 9. Izado de un cabecero de torre

3. Elementos auxiliares del Main Span

La construcción del Main Span se realizó mediante la técnica de avance en voladizo (fig. 10).

El izado de las dovelas se realizó desde la base del pilono mediante un carro de izado. Este carro de izado situado sobre el tablero cerca del pilono transfería la dovela a un carro de transporte (trolley) que transportaba la dovela hasta el frente de avance mediante un sistema de piñón-cremallera.

El sistema de izado de las dovelas descrito anteriormente se empleó con todas las dovelas del Main Span excepto con las tres primeras, que no tenían cables de atirantamiento.

Se diseñó una estructura auxiliar inclinada en forma de jabalcón (Delta Frame) para el apeo de las cuatro primeras dovelas (las tres primeras dovelas sin cable de atirantamiento y la primera dovela con cable de atirantamiento). Esta estructura auxiliar permitía el izado con grúa de estas primeras dovelas (fig. 11 y 12).

Figura 10. Avance en voladizos del Main Span

La estructura del Delta Frame consistía en una celosía tubular con uniones atornilladas, para facilitar su montaje en obra. Se dispuso una de estas estructuras para cada cajón. El Delta Frame fue fabricado íntegramente por DIZMAR en España y trasladado en barco a la obra.

La estructura del Delta Frame se componía de dos elementos principales: la celosía superior que servía de apoyo al tablero y de conexión al pilono y la celosía inferior triangulada que servía de apoyo a la celosía superior y que estaba conectada a la cimentación del pilono. La celosía superior se dividía, a su vez, en dos tramos unidos mediante una unión bulonada, al igual que la unión de la celosía triangular a la cimentación.

Figura 11. Elementos principales del Delta Frame

Figura 12. Delta Frame y avance en voladizos del Main Span mediante carro de izado

Tanto el montaje como el desmontaje de los diferentes elementos del Delta Frame formaron parte fundamental del diseño ya desde la etapa conceptual (fig. 13). Los izados del montaje, por ejemplo, se tenían que realizar sin ocupar tanto el canal de navegación como el dique de servicio del mismo y con el pilono parcialmente ejecutado, asegurando la estabilidad de la celosía triangular mediante un sistema de cables de retenida. El desmontaje, sin embargo, se tuvo que realizar con el tablero ya ejecutado, empleando de nuevo el sistema de cables de retenida, pero manteniendo en este caso la celosía superior suspendida del tablero mediante unidades de izado.

3.1. Elementos auxiliares para el ensamblaje de las dovelas del Main Span

Como se ha comentado anteriormente, las dovelas del Main Span eran transportadas al frente de avance mediante un complejo sistema de carros. El carro de izado que se encontraba en el frente de avance (DLF) era el encargado del izado final y de la alineación de la dovela para comenzar el atornillado del cajón central.

Figura 14. Balancín de izado

No era así para los cajones laterales, los cuales no quedaban completamente alineados al ensamblar el cajón central. Debido a varias causas: la primera era que el peso de la dovela izada era menor al del resto de dovelas ya que la que se estaba izando no llevaba todas las losas instaladas (para no sobrecargar ni el carro ni el puente antes de tesar los tirantes), y además los hormigonados in-situ entre losas no estaban aún ejecutados; la segunda causa era que el puente ya ejecutado estaba resistiendo además de su peso, el peso de la dovela izada y el del DLF; la tercera causa era que la distancia transversal entre cables de izado era mayor a la distancia entre tirantes, por tanto, la luz de flexión en la dovela izada era menor; por último, estaban las posibles desviaciones debidas a tolerancias de fabricación y montaje (fig. 15).

Figura 15. Deformada diferencial en cajones lateral entre la dovela izada y el puente ya ejecutado

Para corregir estas deformadas diferenciales entre cajones y alcanzar la alineación de los mismos para su posterior atornillado se diseñaron unos sistemas de corrección.

Estos sistemas de corrección consistían en un conjunto de gatos y barras, tanto en longitudinal como sentido vertical que permitían forzar y alinear los cajones laterales para comenzar el atornillado dentro de las habituales tolerancias de las uniones atornilladas. Estas barras y gatos se anclaban a unas estructuras de reacción atornilladas a los cajones metálicos a ambos lados de la junta (fig. 16).

Figura 16. Alzado del sistema de ensamblaje

Los gatos verticales permitían la alineación vertical de las dovelas en cada alma (un gato para cada una de las 2 almas exteriores de cada cajón lateral). Mientras que los gatos y barras longitudinales permitían asegurar que la junta quedaba paralela al final del ensamblaje y que los agujeros de la unión atornillada se encontraban a la distancia de fabricación.

Figura 17. Desalineación entre dovelas

El diseño del sistema de ensamblaje de las dovelas del Main Span se realizó con la ayuda del modelo global de elementos finitos del puente completo, en el que la dovela izada y las tres dovelas anteriores se representaron con elementos tipo shell. Dada la gran precisión requerida para evaluar las deformaciones locales estudiar, se representaron todos а los diafragmas, rigidizadores longitudinales V transversales (fig. 18).

Figura 18. Modelo 3D del puente empleado para el análisis del ensamblaje de dovelas del Main Span

El análisis se realizó en dos etapas. La primera etapa consistió en determinar las máximas desviaciones esperadas debido a los diferentes efectos (deformadas, tolerancias de ejecución y fabricación, y efectos térmicos). La segunda etapa consistió en el cálculo de las fuerzas necesarias para corregir esas desviaciones y el diseño de los elementos auxiliares para llevar a cabo la operación.

Por tanto, durante la construcción se tuvo la oportunidad de comprobar la precisión de los resultados predichos por el modelo, siendo en general los errores en la evaluación de las deformaciones (milimétricas) menores al 10%. Cabe reseñar que las operaciones de ensamblaje se consideraron desde un principio una de las maniobras clave y uno de los puntos críticos en el ciclo de izado de las dovelas. Esto era así especialmente debido a que no se había realizado una maniobra como esta con anterioridad en otros puentes (alineación, atornillado de ensamblaje V dovelas conformadas por tres cajones metálicos unidos por cajones transversales) y a la gran incertidumbre en las desviaciones esperadas. Gracias a la gran precisión de los resultados del modelo estructural, al diseño de un sistema flexible (en cuanto a capacidad, pero también en cuanto a la corrección de desviaciones en ambos sentidos, con dispositivos reversibles con capacidad a tracción y a compresión) y a un uso adecuado de los dispositivos de ensamblaje en obra, las operaciones de ensamblaje y atornillado parcial de los cajones laterales supusieron de media solamente 1 día del ciclo de izado de la dovela (ciclo completo de 14 a 21

días según dovela), lo cual fue todo un éxito (fig. 19).

Figura 19. Unión atornillada entre dovelas después de la corrección con los dispositivos de ensamblaje

3.2. Elementos auxiliares para el cierre del Main Span

El cierre del Main Span fue una de las operaciones más complejas de todo el proyecto. Suponía la prueba final de que se había obtenido la geometría correcta en todas las fases: proyecto, fabricación y montaje. Todos aquellos errores geométricos que se hubieran ido cometiendo en cada etapa del proyecto a lo largo de todo el puente se habrían acumulado hasta este momento. Además, esta operación se encontraba cercana a la finalización de la construcción, por ello cualquier retraso en la operación de cierre tenía un impacto directo en la fecha de finalización de la obra. Por último, la maniobra de cierre se tuvo que realizar en pleno invierno, con temperaturas mínimas de hasta -25 °C (temperaturas muy diferentes a las de diseño del puente). El diseñador del puente estableció -18 °C como temperatura mínima (en el acero) para comenzar y completar el atornillado de la junta de cierre (fig. 20). El taladrado de los agujeros de los tornillos y el

atornillado parcial de la junta requerían un turno completo de trabajo, quedando por tanto una ventana muy reducida de tiempo para completar la operación con temperaturas menores a -18 °C.

Figura 20. Junta de cierre del Main Span

Figura 21. Vista del modelo 3D del cierre

Con estas desviaciones teóricas se evaluaron los posibles métodos para corregirlas: actuar con los cables de atirantado, sistema de ensamblaje de gatos y barras en la junta (similar al diseñado para el ensamblaje de las dovelas del Main Span) y el uso de chapas cubrejuntas para diferentes longitudes de junta de cierre (fig. 22). aseguraba que el cajón estaba prácticamente alineado en vertical, a falta de una última corrección con un sistema de gatos vertical (1 por alma de cajón central) diseñado a tal efecto.

Figura 22. Detalle del modelo 3D de cierre. Evaluación de rigidez para la alineación vertical

La ligera desviación en el giro de torsión del cajón central se corrigió también con este sistema de gatos verticales (fig. 23).

Figura 23. Gato vertical para alineación del cajón central en el cierre del Main Span y carrete de atornillado y cubrejuntas una vez alineado

Una vez instalados los primeros tornillos se liberó la coacción longitudinal en la pila del vano principal, permitiendo así el desplazamiento libre del puente. Acto seguido se completó el atornillado.

Completado el atornillado del cajón central se procedió a la alineación vertical de los cajones laterales. La maniobra a seguir fue muy similar a la descrita para el ensamblaje de las dovelas de Main Span, mediante el uso de un sistema de gatos y barras verticales.

Agradecimientos

Los autores desean expresar su agradecimiento a todo el equipo de ingenieros que ha participado en el proyecto, de manera destacada al equipo de la U.T.E. de construcción SSLC, especialmente a los ingenieros Antonio Caracena, Gonzalo Osborne, Antoine Ghouti y Pedro García, y a todo el equipo de los talleres metálicos de TECADE y DIZMAR.

Referencias

- H. Corres, F. Millanes, J. Andueza, y E. Bordó. Proyecto de empuje del puente sobre el Canal de Beauharnoise (Montreal, Canadá). V Congreso de ACHE. Barcelona 2011.
- [2] H. Corres, J. de Cabo y J. Sánchez. Ingeniería de los efímero en la construcción del tablero del Viaducto del Río Ulla. VI Congreso de ACHE. Madrid 2014.
- [3] H. Corres, A. Pérez, J. Milián, A. Abel, C. Lucas y G. Lorente. Nuevo Puente Champlain sobre el río San Lorenzo en Montreal. Estudio de alternativas de proceso constructivo y secuencia final. VIII Congreso de ACHE. Santander 2020.
- [4] S6-14 Canadian Highway Bridge Design Code. CSA Group. 2014.